cubic symmetric graphs of orders $36p$ and $36p^{2}$

Authors

m. alaeiyan

l. pourmokhtar

m. k. hosseinpoor

abstract

a graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. in this paper, we  classifyall the connected cubic symmetric  graphs of order $36p$  and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Cubic symmetric graphs of orders $36p$ and $36p^{2}$

A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we  classifyall the connected cubic symmetric  graphs of order $36p$  and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.

full text

Symmetric cubic graphs of small girth

A graph Γ is symmetric if its automorphism group acts transitively on the arcs of Γ, and s-regular if its automorphism group acts regularly on the set of s-arcs of Γ. Tutte (1947, 1959) showed that every cubic finite symmetric cubic graph is s-regular for some s ≤ 5. We show that a symmetric cubic graph of girth at most 9 is either 1-regular or 2-regular (following the notation of Djokovic), or...

full text

Symmetric Cubic Graphs of Girth at Most 7

By a symmetric graph we mean a graph X which automorphism group acts transitively on the arcs of X. A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. Tutte [31, 32] showed that every finite symmetric cubic graph is s-regular for some s ≤ 5. It is well-known that there are precisely five symmetric cubic graphs of girth less than 6. All these graphs can be re...

full text

A more detailed classification of symmetric cubic graphs

A graph Γ is symmetric if its automorphism group acts transitively on the arcs of Γ, and s-regular if its automorphism group acts regularly on the set of s-arcs of Γ. Tutte (1947, 1959) showed that every cubic finite symmetric cubic graph is s-regular for some s ≤ 5. Djokovič and Miller (1980) proved that there are seven types of arc-transitive group action on finite cubic graphs, characterised...

full text

Classifying cubic symmetric graphs of order 8p or 8p2

A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. In this paper, we classify the s-regular elementary Abelian coverings of the three-dimensional hypercube for each s ≥ 1 whose fibre-preserving automorphism subgroups act arc-transitively. This gives a new infinite family of cubic 1-regular graphs, in which the smallest one has order 19 208. As an application...

full text

Note on cubic symmetric graphs of order 2pn

Let p be a prime and n a positive integer. In [J. Austral. Math. Soc. 81 (2006), 153–164], Feng and Kwak showed that if p > 5 then every connected cubic symmetric graph of order 2p is a Cayley graph. Clearly, this is not true for p = 5 because the Petersen graph is non-Cayley. But they conjectured that this is true for p = 3. This conjecture is confirmed in this paper. Also, for the case when p...

full text

My Resources

Save resource for easier access later


Journal title:
journal of algebra and related topics

Publisher: university of guilan

ISSN 2345-3931

volume 2

issue 1 2014

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023